Engineering college Computer dept. third stage				
ADC	REG, memory memory, REG REG, REG memory, immediate REG, immediate	Add with Carry. Algorithm: operand1 = operand1 + operand2 + CF Example: STC ; set CF = 1 MOV AL, 5 ; AL = 5 ADC AL, 1 ; AL = 7 RET CZSOPA rrrrrr		
ADD	REG, memory memory, REG REG, REG memory, immediate REG, immediate	Add. Algorithm: operand1 = operand1 + operand2 Example: MOV AL, 5 ; AL = 5 ADD AL, -3 ; AL = 2 RET C Z S O P A r r r r r r		

Engineering college Computer dept. third stage					
LEA	REG, memory	Load Effective Address. Algorithm: REG = address of memory (offset) Generally this instruction is replaced by MOV when assembling when possible. Example: ORG 100h LEA AX, m RET m DW 1234h END AX is set to: 0104h. LEA instruction takes 3 bytes, RET takes 1 byte, we start at 100h, so the address of 'm' is 104h. CZSOPA			

Engineering college Computer dept.

third stage

Increment.

Algorithm:

operand = operand + 1

Example:

MOV AL, 4
INC AL ; AL = 5
RET

Z S O P A

r r r r r

CF - unchanged!

SBB

REG, memory memory, REG REG, REG memory, immediate REG, immediate Subtract with Borrow.

Algorithm:

operand1 = operand2 - CF

Example: STC

MOV AL, 5

SBB AL, 3; AL = 5 - 3 - 1 = 1

RET

C Z S O P A
r r r r r r

Engineering college Computer dept.

NEG

third stage

Negate. Makes operand negative (two's complement).

Algorithm:

Invert all bits of the operand

Add 1 to inverted operand

REG memory

Example:

MOV \overrightarrow{AL} , 5; $\overrightarrow{AL} = 05h$ NEG AL ; AL = 0FBh (-5); AL = 05h (5)NEG AL

RET

CZSOPA r r r r r

Engineering colleg	e
Computer dept.	

third stage

Compare	•

Algorithm:

operand1 - operand2

CMP

REG, memory memory, REG REG, REG memory, immediate REG, immediate

result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.

Example: MOV AL, 5

MOV BL, 5

CMP AL, BL; AL = 5, ZF = 1 (so equal!)

RET

C Z S O P A
r r r r r

Engineering college Computer dept.

	Engineering college Computer dept. third stage		
DIV	REG memory	Unsigned divide. Algorithm: when operand is a byte: AL = AX / operand AH = remainder (modulus) when operand is a word: AX = (DX AX) / operand DX = remainder (modulus) Example: MOV AX, 203 ; AX = 00CBh MOV BL, 4 DIV BL ; AL = 50 (32h), AH = 3 RET CZSOPA ? ? ? ? ? ?	
IDIV	REG	Signed divide. Algorithm: when operand is a byte : AL = AX / operand AH = remainder (modulus) when operand is a word : AX = (DX AX) / operand DX = remainder (modulus) Example: MOV AX, -203; AX = 0FF35h MOV BL, 4 IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh) RET CZSOPA ? ? ? ? ? ?	

Engineering college Computer dept.

